Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 743
Filtrar
1.
Biochem Pharmacol ; 222: 116046, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38341001

RESUMEN

Patients with epilepsy require improved medications. Purinergic receptors were identified as late as 1976 and are slowly emerging as potential drug targets for the discovery of antiseizure medications. While compounds interacting with these receptors have been approved for use as medicines (e.g., gefapixant for cough) and continue to be explored for a number of diseases (e.g., pain, cancer), there have been no purinergic receptor antagonists that have been advanced for epilepsy. There are very few studies on the channel conducting receptors, P2X3 and P2X4, that suggest their possible role in seizure generation or control. However, the limited data available provides some compelling reasons to believe that they could be valuable antiseizure medication drug targets. The data implicating P2X3 and P2X4 receptors in epilepsy includes the role played by ATP in neuronal excitability and seizures, receptor localization, increased receptor expression in epileptic brain, the involvement of these receptors in seizure-associated inflammation, crosstalk between these purinergic receptors and neuronal processes involved in seizures (GABAergic and glutamatergic neurotransmission), and the significant attenuation of seizures and seizure-like activity with P2X receptor blockade. The discovery of new and selective antagonists for P2X3 and P2X4 receptors is ongoing, armed with new structural data to guide rational design. The availability of safe, brain-penetrant compounds will likely encourage the clinical exploration of epilepsy as a disease entity.


Asunto(s)
Epilepsia , Antagonistas del Receptor Purinérgico P2X , Humanos , Antagonistas del Receptor Purinérgico P2X/farmacología , Antagonistas del Receptor Purinérgico P2X/uso terapéutico , Dolor , Epilepsia/tratamiento farmacológico , Receptores Purinérgicos P2X4 , Convulsiones/tratamiento farmacológico , Receptores Purinérgicos P2X3 , Adenosina Trifosfato/metabolismo
2.
J Ethnopharmacol ; 325: 117886, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38355027

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: PolyphyllinVI (PPⅥ) is the main bioactive component of Chonglou which is a traditional Chinese herbal with various effects, including antitumor, anti-inflammatory, and analgesia. AIM OF THE STUDY: This study aimed to investigate the properties and mechanisms of the analgesia of PPⅥ by using neuropathic pain (NPP) mice. MATERIALS AND METHODS: The potential targets and mechanisms of PPⅥ in alleviating NPP were excavated based on the network pharmacology. Subsequently, the construction of a spared nerve injury (SNI) mice model was used to evaluate the effect of PPⅥ on NPP and the expression of the P2X3 receptor. We identified the signaling pathways of PPⅥ analgesia by RNA sequencing. RESULTS: The results of network pharmacology showed that BCL2, CASP3, JUN, STAT3, and TNF were the key targets of the analgesic effect of PPⅥ. PPⅥ increased the MWT and TWL of SNI mice and decreased the level of P2X3 receptors in the dorsal root ganglion (DRG) and spinal cord (SC). Additionally, PPⅥ reduced the release of pro-inflammatory mediators (TNF-α, IL-1ß, and IL-6) in the DRG, SC, and serum. Based on the KEGG enrichment of differentially expressed genes (DEGs) identified by RNA-Seq, PPVI may relieve NPP by regulating the AMPK/NF-κB signaling pathway. Western blotting results showed that the AMPK signaling pathway was activated, followed by inhibition of the NF-κB signaling pathway. CONCLUSION: PPⅥ increased the MWT and TWL of SNI mice maybe by inhibiting the expression of the P2X3 receptor and the release of inflammatory mediators. The properties of the analgesia of PPⅥ may be based on the AMPK/NF-κB pathway.


Asunto(s)
Neuralgia , Receptores Purinérgicos P2X3 , Ratas , Ratones , Animales , Ratas Sprague-Dawley , Receptores Purinérgicos P2X3/metabolismo , FN-kappa B/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Neuralgia/metabolismo , Ganglios Espinales
3.
Mol Pain ; 20: 17448069241234451, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38325814

RESUMEN

Toothache is one of the most common types of pain, but the mechanisms underlying pulpitis-induced pain remain unknown. The ionotropic purinergic receptor family (P2X) is reported to mediate nociception in the nervous system. This study aims to investigate the involvement of P2X3 in the sensitisation of the trigeminal ganglion (TG) and the inflammation caused by acute pulpitis. An acute tooth inflammation model was established by applying LPS to the pulp of SD rats. We found that the increased expression of P2X3 was induced by acute pulpitis. A selective P2X3 inhibitor (A-317491) reduced pain-like behavior in the maxillofacial region of rats and depressed the activation of neurons in the trigeminal ganglion induced by pulpitis. The upregulated MAPK signaling (p-p38, p-ERK1/2) expression in the ipsilateral TG induced by pulpitis could also be depressed by the application of the P2X3 inhibitor. Furthermore, the expression of markers of inflammatory processes, such as NF-κB, TNF-α and IL-1ß, could be induced by acute pulpitis and deduced by the intraperitoneal injection of P2X3 antagonists. Our findings demonstrate that purinergic P2X3 receptor signaling in TG neurons contributes to pulpitis-induced pain in rats and that P2X3 signaling may be a potential therapeutic target for tooth pain.


Asunto(s)
Pulpitis , Ratas , Animales , Pulpitis/metabolismo , FN-kappa B/metabolismo , Ratas Sprague-Dawley , Dolor/metabolismo , Transducción de Señal , Inflamación/complicaciones , Inflamación/metabolismo , Receptores Purinérgicos P2X3/metabolismo , Ganglio del Trigémino/metabolismo
4.
Exp Physiol ; 109(4): 524-534, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38213082

RESUMEN

Hindlimb ischaemia-reperfusion (IR) is among the most prominent pathophysiological conditions observed in peripheral artery disease (PAD). An exaggerated arterial blood pressure (BP) response during exercise is associated with an elevated risk of cardiovascular events in individuals with PAD. However, the precise mechanisms leading to this exaggerated BP response are poorly elucidated. The P2X3 signalling pathway, which plays a key role in modifying the exercise pressor reflex (EPR), is the focus of the present study. We determined the regulatory role of P2X3 on the EPR in a rat model of hindlimb IR. In vivo and in vitro approaches were used to determine the expression and functions of P2X3 in muscle afferent nerves and EPR in IR rats. We found that in IR rats there was (1) upregulation of P2X3 protein expression in the L4-6 dorsal root ganglia (DRG); (2) amplified P2X currents in isolated isolectin B4 (IB4)-positive muscle DRG neurons; and (3) amplification of the P2X-mediated BP response. We further verified that both A-317491 and siRNA knockdown of P2X3 significantly decreased the activity of P2X currents in isolated muscle DRG neurons. Moreover, inhibition of muscle afferents' P2X3 receptor using A-317491 was observed to alleviate the exaggerated BP response induced by static muscle contraction and P2X-induced BP response by α,ß-methylene ATP injection. P2X3 signalling pathway activity is amplified in muscle afferent DRG neurons in regulating the EPR following hindlimb IR.


Asunto(s)
Ganglios Espinales , Neuronas Aferentes , Fenoles , Compuestos Policíclicos , Ratas , Animales , Ganglios Espinales/metabolismo , Ratas Sprague-Dawley , Neuronas Aferentes/fisiología , Reflejo , Neuronas/metabolismo , Músculo Esquelético/metabolismo , Isquemia/metabolismo , Miembro Posterior/metabolismo , Receptores Purinérgicos P2X3/metabolismo
5.
Anat Sci Int ; 99(1): 68-74, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37410337

RESUMEN

In the carotid body of laboratory rodents, adenosine 5'-triphosphate (ATP)-mediated transmission is regarded as critical for transmission from chemoreceptor type I cells to P2X3 purinoceptor-expressing sensory nerve endings. The present study investigated the distribution of P2X3-immunoreactive sensory nerve endings in the carotid body of the adult male Japanese monkey (Macaca fuscata) using multilabeling immunofluorescence. Immunoreactivity for P2X3 was detected in nerve endings associated with chemoreceptor type I cells immunoreactive for synaptophysin. Spherical or flattened terminal parts of P2X3-immunoreactive nerve endings were in close apposition to the perinuclear cytoplasm of synaptophysin-immunoreactive type I cells. Immunoreactivity for ectonucleoside triphosphate diphosphohydrolase 2 (NTPDase2), which hydrolyzes extracellular ATP, was localized in the cell body and cytoplasmic processes of S100B-immunoreactive cells. NTPDase2-immunoreactive cells surrounded P2X3-immunoreactive terminal parts and synaptophysin-immunoreactive type I cells, but did not intrude into attachment surfaces between terminal parts and type I cells. These results suggest ATP-mediated transmission between type I cells and sensory nerve endings in the carotid body of the Japanese monkey, as well as those of rodents.


Asunto(s)
Cuerpo Carotídeo , Ratas , Animales , Masculino , Cuerpo Carotídeo/metabolismo , Macaca fuscata/metabolismo , Receptores Purinérgicos P2X3/metabolismo , Sinaptofisina/metabolismo , Ratas Wistar , Células Receptoras Sensoriales/metabolismo , Adenosina Trifosfato/metabolismo
6.
Purinergic Signal ; 20(1): 5-8, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37211586

RESUMEN

Heart failure is associated with multiple mechanisms, including sympatho-excitation, and is one of the leading causes of death worldwide. Enhanced carotid body chemoreflex function is strongly related to excessive sympathetic nerve activity and sleep-disordered breathing in heart failure. How to reduce the excitability of the carotid body is still scientifically challenging. Both clinical and experimental evidence have suggested that targeting purinergic receptors is of great potential to combat heart failure. In a recent study, Lataro et al. (Lataro et al. in Nat Commun 14:1725, 5) demonstrated that targeting purinergic P2X3 receptors in the carotid body attenuates the progression of heart failure. Using a series of molecular, biochemical, and functional assays, the authors observed that the carotid body generates spontaneous, episodic burst discharges coincident with the onset of disordered breathing in male rats with heart failure, which was generated by ligating the left anterior descending coronary artery. Moreover, P2X3 receptor expression was found to be upregulated in the petrosal ganglion chemoreceptive neurons of rats with heart failure. Of particular note, treatment with a P2X3 antagonist rescued pathological breathing disturbances, abolished episodic discharges, reinstated autonomic balance, attenuated cardiac dysfunction, and reduced the immune cell response and plasma cytokine levels in those rats.


Asunto(s)
Cuerpo Carotídeo , Insuficiencia Cardíaca , Ratas , Masculino , Animales , Cuerpo Carotídeo/metabolismo , Receptores Purinérgicos P2X/metabolismo , Insuficiencia Cardíaca/metabolismo , Neuronas/metabolismo , Sistema Nervioso Simpático , Receptores Purinérgicos P2X3/metabolismo , Receptores Purinérgicos P2X2/metabolismo
7.
Mol Neurobiol ; 61(2): 707-724, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37656312

RESUMEN

The role of heat shock protein 27 (HSP27), a chaperone, in neuropathic pain after nerve injury has not been systematically surveyed despite its neuroprotective and regeneration-promoting effects. In this study, we found that HSP27 expression in sensory neurons of the dorsal root ganglia (DRG) mediated nerve injury-induced neuropathic pain. Neuropathic pain behaviors were alleviated by silencing HSP27 in the DRG of a rat spinal nerve ligation (SNL) model. Local injection of an HSP27-overexpression construct into the DRG of naïve rats elicited neuropathic pain behaviors. HSP27 interacted with a purinergic receptor, P2X3, and their expression patterns corroborated the induction and reversal of neuropathic pain according to two lines of evidence: colocalization immunohistochemically and immunoprecipitation biochemically. In a cell model cotransfected with HSP27 and P2X3, the degradation rate of P2X3 was reduced in the presence of HSP27. Such an alteration was mediated by reducing P2X3 ubiquitination in SNL rats and was reversed after silencing HSP27 in the DRGs of SNL rats. In summary, the interaction of HSP27 with P2X3 provides a new mechanism of injury-induced neuropathic pain that could serve as an alternative therapeutic target.


Asunto(s)
Proteínas de Choque Térmico HSP27 , Neuralgia , Animales , Ratas , Ganglios Espinales/metabolismo , Proteínas de Choque Térmico HSP27/metabolismo , Hiperalgesia/metabolismo , Neuralgia/metabolismo , Ratas Sprague-Dawley , Nervios Espinales/metabolismo , Receptores Purinérgicos P2X3/metabolismo
8.
Br J Pharmacol ; 181(8): 1203-1220, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37921202

RESUMEN

BACKGROUND AND PURPOSE: The P2X3 receptor, a trimeric ionotropic purinergic receptor, has emerged as a potential therapeutic target for refractory chronic cough (RCC). Nevertheless, gefapixant/AF-219, the only marketed P2X3 receptor antagonist, might lead taste disorders by modulating the human P2X2/3 (hP2X2/3) heterotrimer. Hence, in RCC drug development, compounds exhibiting strong affinity for the hP2X3 homotrimer and a weak affinity for the hP2X2/3 heterotrimer hold promise. An example of such a molecule is sivopixant/S-600918, a clinical Phase II RCC candidate with a reduced incidence of taste disturbance compared to gefapixant. Sivopixant and its analogue, (3-(4-([3-chloro-4-isopropoxyphenyl]amino)-3-(4-methylbenzyl)-2,6-dioxo-3,6-dihydro-1,3,5-triazin-1(2H)-yl)propanoic acid (DDTPA), exhibit both high affinity and high selectivity for hP2X3 homotrimers, compared with hP2X2/3 heterotrimers. The mechanism underlying the druggable site and its high selectivity remains unclear. EXPERIMENTAL APPROACH: To analyse mechanisms that distinguish this drug candidate from other inhibitors of the P2X3 receptors we used a combination of chimera construction, site covalent occupation, metadynamics, mutagenesis and whole-cell recording. KEY RESULTS: The high affinity and selectivity of sivopixant/DDTPA for hP2X3 receptors was determined by the tri-symmetric site located close to the upper vestibule. Substitution of only four amino acids inside the upper body domain of hP2X2 with those of hP2X3, enabled the hP2X2/3 heterotrimer to exhibit a similar level of apparent affinity for sivopixant/DDTPA as the hP2X3 homotrimer. CONCLUSION AND IMPLICATIONS: From the receptor-ligand recognition perspective, we have elucidated the molecular basis of novel RCC clinical candidates' cough-suppressing properties and reduced side effects, offering a promising approach to the discovery of novel drugs that specifically target P2X3 receptors.


Asunto(s)
Compuestos de Anilina , Bencenosulfonamidas , Carcinoma de Células Renales , Neoplasias Renales , Pirimidinas , Triazinas , Humanos , Carcinoma de Células Renales/inducido químicamente , Piridinas/uso terapéutico , Antagonistas del Receptor Purinérgico P2X/farmacología , Antagonistas del Receptor Purinérgico P2X/uso terapéutico , Tos/inducido químicamente , Receptores Purinérgicos P2X3 , Sulfonamidas , Neoplasias Renales/inducido químicamente , Receptores Purinérgicos P2X2
9.
J Ethnopharmacol ; 317: 116762, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-37301308

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Scutellaria baicalensis Georgi (SBG) is a perennial herb with anti-inflammatory, antibacterial, and antioxidant activities, which is traditionally used to treat inflammation of respiratory tract and gastrointestinal tract, abdominal cramps, bacterial and viral infections. Clinically, it is often used to treat inflammatory-related diseases. Research has shown that the ethanol extract of Scutellaria baicalensis Georgi (SGE) has anti-inflammatory effect, and its main components baicalin and baicalein have analgesic effects. However, the mechanism of SGE in relieving inflammatory pain has not been deeply studied. AIM OF THE STUDY: This study aimed to evaluate the analgesic effect of SGE on complete Freund's adjuvant (CFA)-induced inflammatory pain rats, and to investigate whether its effect on relieving inflammatory pain is associated with regulation of P2X3 receptor. MATERIALS AND METHODS: The analgesic effects of SGE on CFA-induced inflammatory pain rats were evaluated by measuring mechanical pain threshold, thermal pain threshold, and motor coordination ability. The mechanisms of SGE in relieving inflammatory pain were explored by detecting inflammatory factors levels, NF-κB, COX-2 and P2X3 expression, and were further verified by addition of P2X3 receptor agonist (α, ß me-ATP). RESULTS: Our results revealed that SGE can notably increase the mechanical pain threshold and thermal pain threshold of CFA-induced inflammatory pain rats, and markedly alleviate the pathological damage in DRG. SGE could suppress the release of inflammatory factors including IL-1ß, IL-6, TNF-α and restrain the expression of NF-κB, COX-2 and P2X3. Moreover, α, ß me-ATP further exacerbated the inflammatory pain of CFA-induced rats, while SGE could markedly raise the pain thresholds and relieve inflammatory pain. SGE could attenuate the pathological damage, inhibit P2X3 expression, inhibit the elevation of inflammatory factors caused by α, ß me-ATP. SGE can also inhibit NF-κB and ERK1/2 activation caused by α, ß me-ATP, and inhibit the mRNA expression of P2X3, COX-2, NF-κB, IL-1ß, IL-6 and TNF-α in DRG of rats induced by CFA coupled with α, ß me-ATP. CONCLUSIONS: In summary, our research indicated that SGE could alleviate CFA-induced inflammatory pain by suppression of P2X3 receptor.


Asunto(s)
FN-kappa B , Receptores Purinérgicos P2X3 , Ratas , Animales , Adyuvante de Freund , FN-kappa B/metabolismo , Etanol/uso terapéutico , Factor de Necrosis Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Scutellaria baicalensis , Ciclooxigenasa 2/metabolismo , Dolor/inducido químicamente , Dolor/tratamiento farmacológico , Dolor/metabolismo , Antiinflamatorios/efectos adversos , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Inflamación/patología , Analgésicos/efectos adversos , Adenosina Trifosfato
10.
Nat Commun ; 14(1): 1725, 2023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-36977675

RESUMEN

Despite advances in the treatment of heart failure, prognosis is poor, mortality high and there remains no cure. Heart failure is associated with reduced cardiac pump function, autonomic dysregulation, systemic inflammation and sleep-disordered breathing; these morbidities are exacerbated by peripheral chemoreceptor dysfunction. We reveal that in heart failure the carotid body generates spontaneous, episodic burst discharges coincident with the onset of disordered breathing in male rats. Purinergic (P2X3) receptors were upregulated two-fold in peripheral chemosensory afferents in heart failure, and when antagonized abolished these episodic discharges, normalized both peripheral chemoreceptor sensitivity and the breathing pattern, reinstated autonomic balance, improved cardiac function, and reduced both inflammation and biomarkers of cardiac failure. Aberrant ATP transmission in the carotid body triggers episodic discharges that via P2X3 receptors play a crucial role in the progression of heart failure and as such offer a distinct therapeutic angle to reverse multiple components of its pathogenesis.


Asunto(s)
Cuerpo Carotídeo , Insuficiencia Cardíaca , Ratas , Masculino , Animales , Receptores Purinérgicos P2X3 , Células Quimiorreceptoras/fisiología , Respiración
11.
Purinergic Signal ; 19(3): 467-479, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-36944825

RESUMEN

Extracellular adenosine 5'-triphosphate (ATP) acts as an autocrine and paracrine agent, the actions of which on affected cells are mediated by P2 receptors (P2R), which include trans cell-membrane cationic channels (P2XRs), and G protein coupled receptors (P2YRs). The mammalian P2X receptors form homotrimeric or heterotrimeric cationic channels, each of which contains three ATP-binding sites. There are seven homotrimeric P2X receptors (P2X1-7) and three heteromeric (P2X2/P2X3, P2X4/P2X6, P2X1/P2X5). In the lungs and airways, ATP activates P2X3 and P2X2/3 receptors (P2X3R, P2X2/3R, respectively) localized on vagal sensory nerve terminals resulting in bronchoconstriction, and cough, and probably also localized release of pro-inflammatory neuropeptides via the axon reflex. Currently, several P2X3R and P2X2/3R antagonists are being developed as drug-candidates for the treatment of chronic cough. This report presents the receptor affinity data of a novel water-soluble small molecule, DT-0111, that acts as a selective P2X3R antagonist.


Asunto(s)
Tos , Receptores Purinérgicos P2X3 , Animales , Antagonistas del Receptor Purinérgico P2X/farmacología , Adenosina Trifosfato/metabolismo , Pulmón/metabolismo , Receptores Purinérgicos P2X2 , Mamíferos/metabolismo
12.
Pain ; 164(7): 1555-1565, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-36633528

RESUMEN

ABSTRACT: Mounting evidence indicates that microRNAs (miRNAs) play critical roles in various pathophysiological conditions and diseases, but the physiological roles of extracellular miRNAs on the disease-related ion channels remain largely unknown. Here, we showed that miR-1306-3p evoked action potentials and induced inward currents of the acutely isolated rat dorsal root ganglion (DRG) neurons. The miR-1306-3p-induced effects were significantly inhibited by A317491, a potent inhibitor of the P2X3 receptor (P2X3R), or disappeared after the knockdown of P2X3Rs in DRG neurons. We further identified R180, K315, and R52 as the miR-1306-3p interaction sites on the extracellular domain of P2X3Rs, which were distinct from the orthosteric ATP-binding sites. Intrathecal injection of miR-1306-3p produced visceral pain but not somatic pain in normal control rats. Conversely, intrathecal application of a miR-1306-3p antagomir and A317491 significantly alleviated visceral pain in a rat model of chronic visceral pain. Together, our findings suggest that miR-1306-3p might function as an endogenous ligand to activate P2X3Rs, eventually leading to chronic visceral pain.


Asunto(s)
MicroARNs , Dolor Visceral , Ratas , Animales , Hiperalgesia , Ratas Sprague-Dawley , Receptores Purinérgicos P2X3/genética , Ganglios Espinales , MicroARNs/genética , Células Receptoras Sensoriales
13.
J Headache Pain ; 24(1): 1, 2023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36597043

RESUMEN

Migraine is a major health burden worldwide with complex pathophysiology and multifarious underlying mechanisms. One poorly understood issue concerns the early steps in the generation of migraine pain. To elucidate the basic process of migraine pain further, it seems useful to consider key molecular players that may operate synergistically to evoke headache. While the neuropeptide CGRP is an important contributor, we propose that extracellular ATP (that generally plays a powerful nociceptive role) is also a major component of migraine headache, acting in concert with CGRP to stimulate trigeminal nociceptive neurons. The aim of the present focused review is to highlight the role of ATP activating its P2X3 membrane receptors selectively expressed by sensory neurons including their nerve fiber terminals in the meninges. Specifically, we present data on the homeostasis of ATP and related purines in the trigeminovascular system and in the CNS; the basic properties of ATP signalling at peripheral and central nerve terminals; the characteristics of P2X3 and related receptors in trigeminal neurons; the critical speed and persistence of P2X3 receptor activity; their cohabitation at the so-called meningeal neuro-immune synapse; the identity of certain endogenous agents cooperating with ATP to induce neuronal sensitization in the trigeminal sensory system; the role of P2X3 receptors in familial type migraine; the current state of P2X3 receptor antagonists and their pharmacological perspectives in migraine. It is proposed that the unique kinetic properties of P2X3 receptors activated by ATP offer an interesting translational value to stimulate future studies for innovative treatments of migraine pain.


Asunto(s)
Trastornos Migrañosos , Receptores Purinérgicos P2X3 , Humanos , Péptido Relacionado con Gen de Calcitonina/metabolismo , Células Receptoras Sensoriales/metabolismo , Dolor , Adenosina Trifosfato/farmacología , Ganglio del Trigémino/metabolismo
14.
Neuropharmacology ; 227: 109443, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36709909

RESUMEN

P2X3 receptors and group II metabotropic glutamate receptors (mGluRs) have been found to be expressed in primary sensory neurons. P2X3 receptors participate in a variety of pain processes, while the activation of mGluRs has an analgesic effect. However, it's still unclear whether there is a link between them in pain. Herein, we reported that the group II mGluR activation inhibited the electrophysiological activity of P2X3 receptors in rat dorsal root ganglia (DRG) neurons. Group II mGluR agonist LY354740 concentration-dependently decreased P2X3 receptor-mediated and α,ß-methylene-ATP (α,ß-meATP)-evoked inward currents in DRG neurons. LY354740 significantly suppressed the maximum response of P2X3 receptor to α,ß-meATP, but did not change their affinity. Inhibition of ATP currents by LY354740 was blocked by the group II mGluR antagonist LY341495, also prevented by the intracellular dialysis of either the Gi/o protein inhibitor pertussis toxin, the cAMP analog 8-Br-cAMP, or the protein kinase A (PKA) inhibitor H-89. Moreover, LY354740 decreased α,ß-meATP-induced membrane potential depolarization and action potential bursts in DRG neurons. Finally, intraplantar injection of LY354740 also relieved α,ß-meATP-induced spontaneous nociceptive behaviors and mechanical allodynia in rats by activating peripheral group Ⅱ mGluRs. These results indicated that peripheral group II mGluR activation inhibited the functional activity of P2X3 receptors via a Gi/o protein and cAMP/PKA signaling pathway in rat DRG neurons, which revealed a novel mechanism underlying analgesic effects of peripheral group II mGluRs. This article is part of the Special Issue on "Purinergic Signaling: 50 years".


Asunto(s)
Receptores de Glutamato Metabotrópico , Ratas , Animales , Receptores de Glutamato Metabotrópico/metabolismo , Ganglios Espinales/metabolismo , Receptores Purinérgicos P2X3/metabolismo , Dolor/metabolismo , Neuronas , Adenosina Trifosfato/metabolismo , Analgésicos/farmacología
15.
Neuropharmacology ; 224: 109358, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36464207

RESUMEN

Fifty years ago, the late Geoffrey Burnstock described the concept of purinergic nerves and transmission bringing into existence the broader concepts of purinergic signaling including P2X receptors. These receptors are trimeric ligand-gated cation channels activated by extracellular adenosine 5'-triphosphate (ATP). P2X receptors have important roles in health and disease and continue to gain interest as potential therapeutic targets in inflammatory, neurological, cardiovascular and many other disorders including cancer. Current understanding of P2X receptors has largely arisen from the study of these receptors in humans and rodents, but additional insights have been obtained from the study of P2X receptors in the domestic dog, Canis familiaris. This review article will briefly introduce purinergic signaling and P2X receptors, before detailing the pharmacological profiles of the two recombinant canine P2X receptors studied to date, P2X7 and P2X4. The article will then describe the current state of knowledge concerning the distribution and function of the P2X receptor family in dogs. The article will also discuss the characterization of single nucleotide polymorphisms in the canine P2RX7 gene, and contrast this variation to the canine P2RX4 gene, which is largely conserved between dogs. Finally, this article will outline published examples of the use of dogs to study the pharmacokinetics of P2X7 and P2X3 antagonists, and how they have contributed to the preclinical testing of antagonists to human P2X7, CE-224,535, and human P2X3, Gefapixant (AF-219, MK-7264) and Eliapixant (BAY, 1817080), with Gefapixant gaining recent approval for use in the treatment of refractory chronic cough in humans. This article is part of the Special Issue on 'Purinergic Signaling: 50 years'.


Asunto(s)
Adenosina Trifosfato , Receptores Purinérgicos P2X7 , Perros , Humanos , Animales , Adenosina Trifosfato/farmacología , Receptores Purinérgicos P2X , Receptores Purinérgicos P2X3 , Antagonistas del Receptor Purinérgico P2X/farmacología
16.
Purinergic Signal ; 19(1): 29-41, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-35218450

RESUMEN

Diabetic neuropathic pain (DNP) is highly common in diabetes patients. P2X receptors play critical roles in pain sensitization. We previously showed that elevated P2X3 expression in dorsal root ganglion (DRG) contributes to DNP. However, the role of other P2X receptors in DNP is unclear. Here, we established the DNP model using a single high-dose streptozotocin (STZ) injection and investigated the expression of P2X genes in the DRG. Our data revealed elevated P2X2, P2X4, and P2X7 mRNA levels in DRG of DNP rats. The protein levels of P2X4 and P2X7 in DNP rats increased, but the P2X2 did not change significantly. To study the role of P2X4 and P2X7 in diabetes-induced hyperalgesia, we treated the DNP rats with TNP-ATP (2',3'-O-(2,4,6-trinitrophenyl)-adenosine 5'-triphosphate), a nonspecific P2X1-7 antagonist, and found that TNP-ATP alleviated thermal hyperalgesia in DNP rats. 2 Hz electroacupuncture is analgesic against DNP and could downregulate P2X4 and P2X7 expression in DRG. Our findings indicate that P2X4 and P2X7 in L4-L6 DRGs contribute to diabetes-induced hyperalgesia, and that EA reduces thermal hyperalgesia and the expression of P2X4 and P2X7.


Asunto(s)
Diabetes Mellitus , Neuropatías Diabéticas , Electroacupuntura , Ratas , Animales , Hiperalgesia/metabolismo , Regulación hacia Abajo , Ganglios Espinales/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Neuropatías Diabéticas/metabolismo , Receptores Purinérgicos P2X3/metabolismo , Diabetes Mellitus/metabolismo
17.
Purinergic Signal ; 19(1): 99-111, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-34973115

RESUMEN

Diabetic neuropathic pain (DNP) is frequent among patients with diabetes. We previously showed that P2X3 upregulation in dorsal root ganglia (DRG) plays a role in streptozotocin (STZ)-induced DNP but the underlying mechanism is unclear. Here, a rat model of DNP was established by a single injection of STZ (65 mg/kg). Fasting blood glucose was significantly elevated from the 1st to 3rd week. Paw withdrawal thresholds (PWTs) and paw withdrawal latencies (PWLs) in diabetic rats significantly reduced from the 2nd to 3rd week. Western blot analysis revealed that elevated p-CaMKIIα levels in the DRG of DNP rats were accompanied by pain-associated behaviors while CaMKIIα levels were unchanged. Immunofluorescence revealed significant increase in the proportion of p-CaMKIIα immune positive DRG neurons (stained with NeuN) in the 2nd and 3rd week and p-CaMKIIα was co-expressed with P2X3 in DNP rats. KN93, a CaMKII antagonist, significantly reduce mechanical hyperalgesia and thermal hyperalgesia and these effects varied dose-dependently, and suppressed p-CaMKIIα and P2X3 upregulation in the DRGs of DNP rats. These results revealed that the p-CaMKIIα upregulation in DRG is involved in DNP, which possibly mediated P2X3 upregulation, indicating CaMKIIα may be an effective pharmacological target for DNP management.


Asunto(s)
Diabetes Mellitus Experimental , Neuropatías Diabéticas , Neuralgia , Ratas , Animales , Ratas Sprague-Dawley , Diabetes Mellitus Experimental/metabolismo , Calcio/metabolismo , Estreptozocina/metabolismo , Estreptozocina/farmacología , Receptores Purinérgicos P2X3/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/farmacología , Ganglios Espinales/metabolismo , Neuralgia/metabolismo , Hiperalgesia/metabolismo , Neuropatías Diabéticas/metabolismo
18.
Purinergic Signal ; 19(1): 13-27, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-35478452

RESUMEN

Upregulation of P2X3 receptor (P2X3R) has been strongly implicated in nociceptive signaling including bone cancer pain (BCP). The present study, using rat bone cancer model, aimed to explore the role of P2X3R in regulating rat pain behavior under the intervention of electroacupuncture (EA). The BCP model was successfully established by injection with MRMT-1 breast cancer cell into the medullary cavity of left tibia for 3 × 104 cells/3 µL PBS in rats as revealed by obvious bone destruction, decreased paw withdrawal thresholds (PWTs), and reduced paw withdrawal latencies (PWLs). Western blot analyses showed that P2X3R expression was significantly upregulated in ipsilateral lumbar 4-6 (L4-6) dorsal root ganglia (DRG), but the difference not seen in spinal cord dorsal horn (SCDH). With the in-depth study of P2X3R activation, we observed that intrathecal injection of P2X3R agonist α,ß-meATP aggravated MRMT-1 induced BCP, while injection of P2X3R inhibitor A-317491 alleviated pain. Subsequently, we demonstrated that BCP induced mechanical allodynia and thermal hyperalgesia were attenuated after EA treatment. Under EA treatment, total P2X3R protein expression in ipsilateral DRGs was decreased, and it is worth mentioning that decreased expression of P2X3R membrane protein, which indicated that both the expression and membrane trafficking of P2X3R were inhibited by EA. The immunofluorescence assay showed that EA stimulation exerted functions by reducing the expression of P2X3R-positive cells in ipsilateral DRGs of BCP rats. Ca2+ imaging analysis revealed that the EA stimulation decreased the percentage of α,ß-meATP responsive neurons in DRGs and inhibited calcium influx. Notably, the inhibitory effect of EA on mechanical allodynia and nociceptive flinches was abolished by intrathecal injection of α,ß-meATP. These findings demonstrated EA stimulation ameliorated mechanical allodynia and thermal hyperalgesia in rat model of MRMT-1-induced BCP. EA exerts analgesic effect on BCP by reducing the overexpression and functional activity of P2X3R in ipsilateral DRGs of BCP rats. Our work first demonstrates the critical and overall role of P2X3R in EA's analgesia against peripheral sensitization of MRMT-1-induced BCP and further supports EA as a potential therapeutic option for cancer pain in clinic.


Asunto(s)
Neoplasias Óseas , Dolor en Cáncer , Electroacupuntura , Ratas , Animales , Hiperalgesia/metabolismo , Dolor en Cáncer/metabolismo , Receptores Purinérgicos P2X3/metabolismo , Ratas Sprague-Dawley , Electroacupuntura/métodos , Dolor/metabolismo , Neoplasias Óseas/metabolismo , Analgésicos , Ganglios Espinales/metabolismo
19.
Zhongguo Zhen Jiu ; 42(11): 1263-8, 2022 Nov 12.
Artículo en Chino | MEDLINE | ID: mdl-36397224

RESUMEN

OBJECTIVE: To observe the effect of electroacupuncture (EA) at "Ciliao" (BL 32) and "Huiyang" (BL 35) on the pain, urodynamic and the expressions of transient receptor poteintial vanilloid 1 (TRPV1) and P2X3 receptors in bladder of rats with interstitial bladder (IC), and to explore the possible mechanism on EA for IC. METHODS: A total of 24 Wistar female rats were randomly divided into a blank group, a model group and an EA group, 8 rats in each group. In the model group and the EA group, IC model was established by intraperitoneal injection of cyclophosphamide by 150 mg/kg at once. EA was applied at "Ciliao" (BL 32) and "Huiyang" (BL 35) in the EA group for 20 min, with continuous wave, 30 Hz in frequency, once a day for 3 consecutive days. Mechanical pain threshold of bladder and urodynamic indexes (first urination time, bladder effective volume and urination pressure) were observed after model establishment and after intervention, the expressions of TRPV1 and P2X3 receptors in the bladder were detected by Western blot. RESULTS: After model establishment, the mechanical pain threshold of bladder was decreased in the model group and the EA group compared with that in the blank group (P<0.01). After intervention, the mechanical pain threshold of bladder in the model group was lower than the blank group (P<0.01), and that in the EA group was higher than the model group (P<0.01). The urodynamic of the rats in the blank group was normal, obvious abnormal contraction during the filling period of bladder was found in the rats of the model group, while no abnormal contraction during the filling period was found in the rats of the EA group. After model establishment, in the model group and the EA group, the first urination time was earlier than the blank group (P<0.01), while bladder effective volume and urination pressure were lower than the blank group (P<0.01). After intervention, in the model group, the first urination time was earlier than the blank group (P<0.01), while bladder effective volume and urination pressure were lower than the blank group (P<0.05); in the EA group, the first urination time was later than the model group (P<0.05), while bladder effective volume and urination pressure were higher than the model group (P<0.05). Compared with the blank group, the protein expressions of TRPV1 and P2X3 receptors in bladder were up-regulated in the model group (P<0.01); compared with the model group, the protein expressions of TRPV1 and P2X3 receptors in bladder were down-regulated in the EA group (P<0.05). CONCLUSION: EA can relieve bladder pain and improve urodynamic in IC rats. The mechanism may be related to the down-regulation on the expressions of TRPV1 and P2X3 receptors and the further inhibition on the abnormal input of bladder signal.


Asunto(s)
Antineoplásicos , Cistitis Intersticial , Electroacupuntura , Ratas , Femenino , Animales , Cistitis Intersticial/genética , Cistitis Intersticial/terapia , Vejiga Urinaria , Receptores Purinérgicos P2X3/genética , Receptores Purinérgicos P2X3/metabolismo , Ratas Sprague-Dawley , Ratas Wistar , Dolor , Canales Catiónicos TRPV/genética , Canales Catiónicos TRPV/metabolismo
20.
Mol Neurobiol ; 59(11): 7025-7035, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36074232

RESUMEN

Purinergic signaling is involved in multiple pain processes. P2X3 receptor is a key target in pain therapeutics, while A1 adenosine receptor signaling plays a role in analgesia. However, it remains unclear whether there is a link between them in pain. The present results showed that the A1 adenosine receptor agonist N6-cyclopentyladenosine (CPA) concentration dependently suppressed P2X3 receptor-mediated and α,ß-methylene-ATP (α,ß-meATP)-evoked inward currents in rat dorsal root ganglion (DRG) neurons. CPA significantly decreased the maximal current response to α,ß-meATP, as shown a downward shift of the concentration-response curve for α,ß-meATP. CPA suppressed ATP currents in a voltage-independent manner. Inhibition of ATP currents by CPA was completely prevented by the A1 adenosine receptor antagonist KW-3902, and disappeared after the intracellular dialysis of either the Gi/o protein inhibitor pertussis toxin, the adenylate cyclase activator forskolin, or the cAMP analog 8-Br-cAMP. Moreover, CPA suppressed the membrane potential depolarization and action potential bursts, which were induced by α,ß-meATP in DRG neurons. Finally, CPA relieved α,ß-meATP-induced nociceptive behaviors in rats by activating peripheral A1 adenosine receptors. These results indicated that CPA inhibited the activity of P2X3 receptors in rat primary sensory neurons by activating A1 adenosine receptors and its downstream cAMP signaling pathway, revealing a novel peripheral mechanism underlying its analgesic effect.


Asunto(s)
Ganglios Espinales , Receptores Purinérgicos P2X3 , Adenosina/metabolismo , Adenosina/farmacología , Adenosina Trifosfato/metabolismo , Adenilil Ciclasas/metabolismo , Analgésicos/farmacología , Animales , Colforsina/farmacología , Ganglios Espinales/metabolismo , Neuronas/metabolismo , Dolor/metabolismo , Toxina del Pertussis/metabolismo , Toxina del Pertussis/farmacología , Agonistas del Receptor Purinérgico P1/metabolismo , Agonistas del Receptor Purinérgico P1/farmacología , Antagonistas de Receptores Purinérgicos P1/farmacología , Ratas , Receptores Purinérgicos P1/metabolismo , Receptores Purinérgicos P2X3/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...